Tableau de valeurs du facteur nodal f
Le tableau suivant des valeurs du facteur nodal f vise à élargir le tableau 14 de Schureman(1958) au-delà de 1999. Les valeurs sont calculées annuellement pour le 1er juillet en utilisant les définitions des composantes satellitaires conformes au progiciel d'analyse et de prévision des marées. Malgré que ces satellites ne sont pas identiques à celles utilisées par Schureman(1959), les différences entre les valeurs respectives de f pour les années 1900-999 sont généralement très petites.
Référence:
Schureman, Paul. 1959. Manual of harmonic analysis and prediction of tides. U.S. Department of Commerce, Coast and Geodetic Survey, Special Publication No.98 U.S. Government Printing Office, Washington. 316pp.
Valeurs annuelles du facteur nodal f au 1er juillet, entre 1900 et 2050
Année | Q1 | O1 | P1 | K1 | N2 | M2 | S2 | K2 |
---|---|---|---|---|---|---|---|---|
1900 | 0.959 | 0.950 | 1.002 | 0.973 | 1.017 | 1.014 | 0.999 | 0.916 |
1901 | 0.904 | 0.891 | 1.007 | 0.934 | 1.020 | 1.025 | 0.999 | 0.835 |
1902 | 0.861 | 0.844 | 1.011 | 0.903 | 1.032 | 1.033 | 0.998 | 0.778 |
1903 | 0.829 | 0.811 | 1.012 | 0.884 | 1.040 | 1.038 | 0.998 | 0.749 |
1904 | 0.810 | 0.803 | 1.011 | 0.882 | 1.034 | 1.038 | 0.998 | 0.748 |
1905 | 0.829 | 0.830 | 1.010 | 0.898 | 1.034 | 1.034 | 0.998 | 0.775 |
1906 | 0.872 | 0.886 | 1.009 | 0.928 | 1.030 | 1.025 | 0.998 | 0.828 |
1907 | 0.922 | 0.952 | 1.006 | 0.966 | 1.013 | 1.014 | 0.999 | 0.904 |
1908 | 0.989 | 1.011 | 1.001 | 1.005 | 1.004 | 1.002 | 1.000 | 0.995 |
1909 | 1.064 | 1.061 | 0.995 | 1.042 | 0.994 | 0.991 | 1.001 | 1.091 |
1910 | 1.130 | 1.113 | 0.993 | 1.073 | 0.976 | 0.980 | 1.001 | 1.179 |
1911 | 1.190 | 1.158 | 0.993 | 1.095 | 0.970 | 0.971 | 1.002 | 1.251 |
1912 | 1.212 | 1.178 | 0.991 | 1.109 | 0.968 | 0.965 | 1.002 | 1.299 |
1913 | 1.187 | 1.176 | 0.988 | 1.113 | 0.959 | 0.964 | 1.002 | 1.316 |
1914 | 1.155 | 1.170 | 0.990 | 1.107 | 0.966 | 0.966 | 1.002 | 1.299 |
1915 | 1.122 | 1.156 | 0.994 | 1.092 | 0.976 | 0.970 | 1.001 | 1.249 |
1916 | 1.079 | 1.116 | 0.996 | 1.068 | 0.979 | 0.980 | 1.001 | 1.170 |
1917 | 1.045 | 1.053 | 0.997 | 1.036 | 0.994 | 0.993 | 1.000 | 1.073 |
1918 | 1.005 | 0.989 | 1.000 | 0.997 | 1.009 | 1.007 | 1.000 | 0.972 |
1919 | 0.947 | 0.931 | 1.005 | 0.957 | 1.014 | 1.018 | 0.999 | 0.880 |
1920 | 0.892 | 0.874 | 1.010 | 0.921 | 1.027 | 1.028 | 0.998 | 0.809 |
1921 | 0.841 | 0.824 | 1.011 | 0.894 | 1.037 | 1.035 | 0.998 | 0.764 |
1922 | 0.804 | 0.801 | 1.011 | 0.881 | 1.034 | 1.038 | 0.998 | 0.747 |
1923 | 0.807 | 0.813 | 1.011 | 0.887 | 1.037 | 1.036 | 0.998 | 0.757 |
1924 | 0.840 | 0.857 | 1.011 | 0.909 | 1.035 | 1.030 | 0.998 | 0.794 |
1925 | 0.885 | 0.913 | 1.008 | 0.942 | 1.020 | 1.021 | 0.998 | 0.855 |
1926 | 0.953 | 0.968 | 1.003 | 0.981 | 1.011 | 1.010 | 0.999 | 0.936 |
1927 | 1.033 | 1.025 | 0.998 | 1.020 | 1.002 | 0.999 | 1.000 | 1.029 |
1928 | 1.105 | 1.086 | 0.996 | 1.055 | 0.982 | 0.987 | 1.001 | 1.123 |
1929 | 1.168 | 1.138 | 0.994 | 1.082 | 0.975 | 0.976 | 1.002 | 1.208 |
1930 | 1.195 | 1.164 | 0.991 | 1.102 | 0.971 | 0.969 | 1.002 | 1.274 |
1931 | 1.178 | 1.173 | 0.988 | 1.112 | 0.960 | 0.965 | 1.002 | 1.312 |
1932 | 1.158 | 1.180 | 0.990 | 1.112 | 0.964 | 0.963 | 1.002 | 1.317 |
1933 | 1.138 | 1.175 | 0.993 | 1.102 | 0.972 | 0.966 | 1.002 | 1.285 |
1934 | 1.106 | 1.139 | 0.994 | 1.084 | 0.973 | 0.974 | 1.001 | 1.221 |
1935 | 1.083 | 1.085 | 0.994 | 1.056 | 0.987 | 0.986 | 1.001 | 1.132 |
1936 | 1.049 | 1.029 | 0.998 | 1.021 | 1.001 | 0.999 | 1.000 | 1.031 |
1937 | 0.991 | 0.972 | 1.003 | 0.981 | 1.006 | 1.011 | 1.000 | 0.933 |
1938 | 0.927 | 0.908 | 1.007 | 0.942 | 1.021 | 1.022 | 0.999 | 0.850 |
1939 | 0.862 | 0.848 | 1.009 | 0.909 | 1.034 | 1.032 | 0.998 | 0.790 |
1940 | 0.809 | 0.811 | 1.011 | 0.887 | 1.033 | 1.037 | 0.998 | 0.757 |
1941 | 0.796 | 0.808 | 1.012 | 0.882 | 1.038 | 1.037 | 0.998 | 0.750 |
1942 | 0.816 | 0.834 | 1.013 | 0.894 | 1.039 | 1.033 | 0.998 | 0.770 |
1943 | 0.852 | 0.876 | 1.010 | 0.921 | 1.025 | 1.027 | 0.998 | 0.815 |
1944 | 0.918 | 0.926 | 1.004 | 0.956 | 1.019 | 1.018 | 0.999 | 0.883 |
1945 | 1.000 | 0.987 | 1.000 | 0.996 | 1.009 | 1.007 | 1.000 | 0.969 |
1946 | 1.075 | 1.055 | 0.998 | 1.034 | 0.990 | 0.994 | 1.001 | 1.064 |
1947 | 1.140 | 1.111 | 0.996 | 1.066 | 0.981 | 0.982 | 1.001 | 1.157 |
1948 | 1.171 | 1.144 | 0.991 | 1.091 | 0.975 | 0.973 | 1.002 | 1.238 |
1949 | 1.164 | 1.166 | 0.989 | 1.107 | 0.962 | 0.967 | 1.002 | 1.296 |
1950 | 1.156 | 1.185 | 0.990 | 1.113 | 0.964 | 0.962 | 1.002 | 1.321 |
1951 | 1.148 | 1.186 | 0.992 | 1.109 | 0.969 | 0.963 | 1.002 | 1.310 |
1952 | 1.129 | 1.157 | 0.992 | 1.097 | 0.967 | 0.970 | 1.002 | 1.262 |
1953 | 1.117 | 1.112 | 0.992 | 1.074 | 0.980 | 0.980 | 1.001 | 1.185 |
1954 | 1.092 | 1.067 | 0.996 | 1.043 | 0.993 | 0.991 | 1.001 | 1.090 |
1955 | 1.034 | 1.013 | 1.001 | 1.006 | 0.999 | 1.003 | 1.000 | 0.990 |
1956 | 0.964 | 0.945 | 1.005 | 0.966 | 1.015 | 1.016 | 0.999 | 0.899 |
1957 | 0.890 | 0.878 | 1.007 | 0.929 | 1.028 | 1.026 | 0.999 | 0.826 |
1958 | 0.824 | 0.832 | 1.010 | 0.899 | 1.030 | 1.033 | 0.998 | 0.776 |
1959 | 0.797 | 0.814 | 1.013 | 0.884 | 1.038 | 1.036 | 0.998 | 0.753 |
1960 | 0.801 | 0.819 | 1.014 | 0.885 | 1.041 | 1.036 | 0.998 | 0.755 |
1961 | 0.825 | 0.844 | 1.011 | 0.903 | 1.030 | 1.032 | 0.998 | 0.783 |
1962 | 0.885 | 0.887 | 1.006 | 0.933 | 1.025 | 1.025 | 0.999 | 0.836 |
1963 | 0.965 | 0.949 | 1.003 | 0.971 | 1.017 | 1.014 | 0.999 | 0.911 |
1964 | 1.040 | 1.020 | 1.001 | 1.011 | 0.997 | 1.002 | 1.000 | 1.003 |
1965 | 1.105 | 1.079 | 0.997 | 1.047 | 0.988 | 0.989 | 1.001 | 1.101 |
1966 | 1.141 | 1.119 | 0.992 | 1.077 | 0.981 | 0.979 | 1.001 | 1.193 |
1967 | 1.144 | 1.153 | 0.990 | 1.099 | 0.966 | 0.970 | 1.002 | 1.267 |
1968 | 1.150 | 1.184 | 0.991 | 1.110 | 0.965 | 0.963 | 1.002 | 1.313 |
1969 | 1.154 | 1.191 | 0.992 | 1.113 | 0.967 | 0.962 | 1.002 | 1.322 |
1970 | 1.147 | 1.169 | 0.990 | 1.106 | 0.964 | 0.966 | 1.002 | 1.293 |
1971 | 1.148 | 1.136 | 0.991 | 1.089 | 0.974 | 0.974 | 1.002 | 1.232 |
1972 | 1.130 | 1.101 | 0.995 | 1.063 | 0.986 | 0.984 | 1.001 | 1.147 |
1973 | 1.073 | 1.051 | 0.999 | 1.029 | 0.991 | 0.996 | 1.000 | 1.050 |
1974 | 1.001 | 0.983 | 1.002 | 0.991 | 1.007 | 1.008 | 1.000 | 0.955 |
1975 | 0.922 | 0.915 | 1.004 | 0.951 | 1.022 | 1.020 | 0.999 | 0.871 |
1976 | 0.848 | 0.863 | 1.009 | 0.916 | 1.026 | 1.029 | 0.998 | 0.806 |
1977 | 0.809 | 0.830 | 1.013 | 0.892 | 1.036 | 1.034 | 0.998 | 0.766 |
1978 | 0.797 | 0.814 | 1.014 | 0.882 | 1.042 | 1.037 | 0.998 | 0.751 |
1979 | 0.806 | 0.819 | 1.011 | 0.890 | 1.033 | 1.035 | 0.998 | 0.762 |
1980 | 0.856 | 0.852 | 1.008 | 0.913 | 1.030 | 1.030 | 0.998 | 0.798 |
1981 | 0.930 | 0.912 | 1.006 | 0.947 | 1.023 | 1.021 | 0.999 | 0.860 |
1982 | 1.000 | 0.982 | 1.003 | 0.987 | 1.005 | 1.009 | 1.000 | 0.944 |
1983 | 1.065 | 1.042 | 0.999 | 1.025 | 0.996 | 0.997 | 1.000 | 1.041 |
1984 | 1.107 | 1.090 | 0.994 | 1.060 | 0.987 | 0.985 | 1.001 | 1.141 |
1985 | 1.120 | 1.136 | 0.992 | 1.087 | 0.971 | 0.974 | 1.001 | 1.228 |
1986 | 1.138 | 1.176 | 0.993 | 1.104 | 0.968 | 0.965 | 1.002 | 1.291 |
1987 | 1.155 | 1.189 | 0.992 | 1.112 | 0.967 | 0.962 | 1.002 | 1.320 |
1988 | 1.160 | 1.175 | 0.989 | 1.111 | 0.961 | 0.964 | 1.002 | 1.313 |
1989 | 1.173 | 1.155 | 0.990 | 1.100 | 0.969 | 0.970 | 1.002 | 1.270 |
1990 | 1.163 | 1.130 | 0.994 | 1.079 | 0.979 | 0.977 | 1.002 | 1.199 |
1991 | 1.108 | 1.085 | 0.997 | 1.051 | 0.983 | 0.988 | 1.001 | 1.110 |
1992 | 1.036 | 1.019 | 0.999 | 1.015 | 1.000 | 1.001 | 1.000 | 1.014 |
1993 | 0.956 | 0.955 | 1.002 | 0.976 | 1.015 | 1.013 | 0.999 | 0.923 |
1994 | 0.879 | 0.900 | 1.007 | 0.937 | 1.020 | 1.023 | 0.999 | 0.845 |
1995 | 0.831 | 0.854 | 1.012 | 0.906 | 1.033 | 1.031 | 0.998 | 0.789 |
1996 | 0.804 | 0.817 | 1.013 | 0.886 | 1.041 | 1.036 | 0.998 | 0.756 |
1997 | 0.798 | 0.805 | 1.011 | 0.882 | 1.034 | 1.038 | 0.998 | 0.750 |
1998 | 0.834 | 0.826 | 1.010 | 0.896 | 1.034 | 1.035 | 0.998 | 0.770 |
1999 | 0.897 | 0.877 | 1.009 | 0.925 | 1.029 | 1.027 | 0.999 | 0.817 |
2000 | 0.959 | 0.942 | 1.006 | 0.962 | 1.012 | 1.017 | 0.999 | 0.890 |
2001 | 1.022 | 1.002 | 1.000 | 1.002 | 1.004 | 1.005 | 1.000 | 0.982 |
2002 | 1.068 | 1.057 | 0.996 | 1.040 | 0.995 | 0.993 | 1.001 | 1.083 |
2003 | 1.092 | 1.114 | 0.994 | 1.072 | 0.977 | 0.980 | 1.001 | 1.180 |
2004 | 1.122 | 1.162 | 0.994 | 1.095 | 0.972 | 0.969 | 1.001 | 1.258 |
2005 | 1.151 | 1.180 | 0.991 | 1.109 | 0.969 | 0.964 | 1.002 | 1.306 |
2006 | 1.169 | 1.176 | 0.988 | 1.113 | 0.960 | 0.964 | 1.002 | 1.319 |
2007 | 1.193 | 1.170 | 0.989 | 1.108 | 0.966 | 0.966 | 1.002 | 1.296 |
2008 | 1.189 | 1.154 | 0.993 | 1.093 | 0.974 | 0.972 | 1.002 | 1.243 |
2009 | 1.137 | 1.114 | 0.995 | 1.069 | 0.976 | 0.981 | 1.001 | 1.167 |
2010 | 1.068 | 1.054 | 0.996 | 1.038 | 0.993 | 0.993 | 1.001 | 1.076 |
2011 | 0.991 | 0.996 | 1.000 | 1.000 | 1.008 | 1.005 | 1.000 | 0.981 |
2012 | 0.914 | 0.941 | 1.006 | 0.961 | 1.014 | 1.016 | 0.999 | 0.893 |
2013 | 0.861 | 0.884 | 1.010 | 0.924 | 1.029 | 1.026 | 0.998 | 0.821 |
2014 | 0.822 | 0.831 | 1.011 | 0.896 | 1.038 | 1.034 | 0.998 | 0.772 |
2015 | 0.801 | 0.802 | 1.011 | 0.882 | 1.034 | 1.038 | 0.998 | 0.749 |
2016 | 0.821 | 0.809 | 1.011 | 0.886 | 1.037 | 1.037 | 0.998 | 0.752 |
2017 | 0.868 | 0.848 | 1.011 | 0.906 | 1.034 | 1.032 | 0.998 | 0.783 |
2018 | 0.918 | 0.902 | 1.008 | 0.939 | 1.019 | 1.024 | 0.999 | 0.842 |
2019 | 0.976 | 0.960 | 1.002 | 0.978 | 1.012 | 1.013 | 0.999 | 0.926 |
2020 | 1.026 | 1.022 | 0.998 | 1.018 | 1.002 | 1.000 | 1.000 | 1.024 |
2021 | 1.060 | 1.088 | 0.997 | 1.053 | 0.984 | 0.986 | 1.001 | 1.125 |
2022 | 1.102 | 1.140 | 0.995 | 1.081 | 0.978 | 0.975 | 1.001 | 1.214 |
2023 | 1.142 | 1.165 | 0.991 | 1.101 | 0.972 | 0.968 | 1.002 | 1.279 |
2024 | 1.173 | 1.173 | 0.988 | 1.112 | 0.960 | 0.965 | 1.002 | 1.312 |
2025 | 1.206 | 1.179 | 0.990 | 1.112 | 0.964 | 0.964 | 1.002 | 1.311 |
2026 | 1.208 | 1.172 | 0.992 | 1.103 | 0.970 | 0.968 | 1.002 | 1.278 |
2027 | 1.159 | 1.137 | 0.993 | 1.085 | 0.970 | 0.975 | 1.002 | 1.217 |
2028 | 1.095 | 1.086 | 0.994 | 1.058 | 0.985 | 0.986 | 1.001 | 1.135 |
2029 | 1.024 | 1.037 | 0.998 | 1.024 | 1.000 | 0.997 | 1.000 | 1.042 |
2030 | 0.951 | 0.983 | 1.004 | 0.985 | 1.007 | 1.008 | 0.999 | 0.947 |
2031 | 0.896 | 0.918 | 1.008 | 0.946 | 1.023 | 1.020 | 0.998 | 0.863 |
2032 | 0.849 | 0.853 | 1.009 | 0.911 | 1.034 | 1.030 | 0.998 | 0.797 |
2033 | 0.815 | 0.812 | 1.011 | 0.888 | 1.033 | 1.037 | 0.998 | 0.757 |
2034 | 0.818 | 0.804 | 1.012 | 0.881 | 1.038 | 1.038 | 0.998 | 0.744 |
2035 | 0.844 | 0.825 | 1.012 | 0.892 | 1.038 | 1.036 | 0.998 | 0.760 |
2036 | 0.879 | 0.866 | 1.009 | 0.917 | 1.024 | 1.029 | 0.998 | 0.804 |
2037 | 0.931 | 0.919 | 1.004 | 0.953 | 1.019 | 1.020 | 0.999 | 0.874 |
2038 | 0.983 | 0.985 | 1.001 | 0.994 | 1.010 | 1.007 | 1.000 | 0.966 |
2039 | 1.026 | 1.057 | 0.999 | 1.032 | 0.992 | 0.993 | 1.000 | 1.066 |
2040 | 1.077 | 1.113 | 0.996 | 1.065 | 0.984 | 0.981 | 1.001 | 1.162 |
2041 | 1.128 | 1.144 | 0.992 | 1.090 | 0.976 | 0.973 | 1.002 | 1.240 |
2042 | 1.170 | 1.164 | 0.989 | 1.106 | 0.963 | 0.967 | 1.002 | 1.292 |
2043 | 1.213 | 1.183 | 0.990 | 1.113 | 0.963 | 0.964 | 1.002 | 1.313 |
2044 | 1.219 | 1.183 | 0.992 | 1.110 | 0.967 | 0.965 | 1.002 | 1.301 |
2045 | 1.174 | 1.154 | 0.991 | 1.097 | 0.965 | 0.971 | 1.002 | 1.259 |
2046 | 1.117 | 1.115 | 0.992 | 1.076 | 0.979 | 0.979 | 1.001 | 1.191 |
2047 | 1.055 | 1.075 | 0.997 | 1.046 | 0.993 | 0.989 | 1.001 | 1.103 |
2048 | 0.988 | 1.023 | 1.002 | 1.009 | 0.999 | 1.000 | 1.000 | 1.006 |
2049 | 0.935 | 0.954 | 1.005 | 0.970 | 1.016 | 1.013 | 0.999 | 0.912 |
2050 | 0.885 | 0.883 | 1.007 | 0.931 | 1.029 | 1.025 | 0.999 | 0.832 |
- Date de modification :